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The mapping of the nonlinear Schrödinger equation with a random potential on the Fokker-Planck equation
is used to calculate the localization length of its stationary states. The asymptotic growth rates of the moments
of the wave function and its derivative for the linear Schrödinger equation in a random potential are computed
analytically, and resummation is used to obtain the corresponding growth rate for the nonlinear Schrödinger
equation and the localization length of the stationary states.
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I. INTRODUCTION

In this work we consider problem of one-dimensional
Anderson localization �1,2� for the nonlinear Schrödinger
equation �NLSE��3–5�. In spite of extensive research, many
fundamental problems are still open, and, in particular, it is
not clear whether in one dimension �1D� Anderson localiza-
tion can survive the effects of nonlinearities. This problem is
relevant for experiments in nonlinear optics—for example,
disordered photonic lattices �6,7�, where Anderson localiza-
tion was found in the presence of nonlinear effects as well as
experiments on Bose-Einstein condensates �BECs� in disor-
dered optical lattices �8–12�. The interplay between disorder
and nonlinear effects leads to new interesting physics
�9,10,13–16�. In particular, the problems of the spreading of
wave packets and transmission are not simply related
�17,18�, in contrast with the linear case.

We consider one-dimensional localization of stationary
solutions of the NLSE in a random �-correlated potential
V�x� with a Gaussian distribution �white noise�, of zero mean
and variance 2D: namely, �V�x�V�x���=2D��x−x��. The lin-
ear version of this model was studied extensively in the past
�19�. Following our previous analysis �20� we study Ander-
son localization of stationary solutions with energies � in the
framework of the stationary NLSE

���x� = − �x
2��x� + ��3�x� + V�x���x� , �1�

where ��x� is chosen real, since the stationary states are
localized. The variables are chosen in dimensionless units
and the Planck constant is �=1. For the lattice version of the
model, it was established rigorously �3,21,22� that the sta-
tionary solutions of this equation are exponentially localized
for a wide range of conditions. It was also argued that the
rate of growth of moments for the stationary NLSE �1� co-
incides exactly with the linear case �20� and determines the
localization length.

We will specifically calculate ��2�x�� of solutions of Eq.
�1� that are found for a certain �, with given boundary con-
ditions at some point—for example, ��x=0� and ���x=0�,
where the prime means the derivative with respect to x. This
will be done with the help of the analogy with the Langevin
equation �19,20,23�. In particular, we will calculate the
growth rate of the second moment,

2� = lim
x→�

ln��2�x��
x

� 0, 	 =
1

�
, �2�

which will turn out to be independent of �, where 	 is
the localization length. Note that it is different from the
usually studied �in the linear case� self-averaging quantity
�s= 1

2
d
dx �ln �2�x��= 1

2 limx→�
�ln �2�x��

x , and � is a smooth func-
tion of energy. Since the distribution of the random potentials
is translationally invariant, it is independent of the choice of
the initial point as x=0. As in the linear case, starting from a
specific initial condition, ��x� will typically grow. For spe-
cific values of � at some point this function will start to
decay, so that a normalized eigenfunction is found. This is
the approach in the manner of Borland �24,25�, which was
made rigorous for the linear case in �26,27�. Here, following
�20� we extend this approach, in a heuristic form, to the
nonlinear case. The envelope of the wave function will grow
exponentially if we start either from the right or from the
left. The value of � results from the matching condition, so
that an eigenfunction has some maximum and decays in both
directions as required by the normalization condition. The
exponential decay is an asymptotic property, while the
matching is determined by the potential in the vicinity of the
maximum. This observation is crucial for the validity of this
approach and enables us to determine the exponential decay
rate of states from the solution of the initial value problem
�1�. In �20� a linear equation for the moments of ��x� of Eq.
�1� and its Langevin analog was derived and it was shown
that the exponents that control the growth of the moments
are identical to the ones of the linear system ��=0�. In the
present paper it will be shown that this is also correct for the
asymptotic behavior of the moments.

The outline of the paper is as follows. The analogy with
the Langevin equation and dynamics of the moments are
outlined in Sec. II. The generalized Lyapunov exponents,
which are the eigenvalues that determine the growth of the
various moments, are presented in Sec. II, and their
asymptotic behavior is derived analytically in Appendix A
�they were found numerically in �28��. The resulting
asymptotic expansion for the growth of the moments is pre-
sented in Sec. III. The results are summarized in Sec. IV.
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II. FOKKER-PLANCK EQUATION
AND LYAPUNOV EXPONENTS

Following Ref. �20�, we perform the calculation of
��2�x�� by using the analogy with the classical Langevin
equation �19,23�. Therefore, considering the x coordinate as
the formal time variable on the half axis x�
� �0,��, Eq.
�1� reduces to the Langevin equation

�̈ + �� − ��3 − V�
�� = 0, �3�

with the � correlated Gaussian noise V�
�. Now we introduce
new variables u=� and v= �̇� d�

d
 �which play the role of
position and velocity in the Langevin equation� and a distri-
bution function of these new variables is P= P�u ,v ,
�. The
dynamical process in the presence of the Gaussian
�-correlated noise is described by the distribution function
that satisfies the Fokker-Planck equation �FPE��20,30�:

�
P − ��u − �u3��vP + v�uP − Du2�v
2P = 0, �4�

where Du2 is the only nonzero component of the diffusion
tensor.

We are interested in the average quantum probability den-
sity ��2�x����u2�
��, where

�u2�
�� =� u2P�u,v,
�du dv .

From the FPE we obtain a system of equations for the mo-
ments:

Mk,l = �ukvl� , �5�

where k , l=0,1 ,2 , . . .. Multiplying ukvl by the FPE and inte-
grating over u and v, one obtains the following relation for
Mk,l:

Ṁk,l = − l�Mk+1,l−1 + kMk−1,l+1 + l�l − 1�DMk+2,l−2

+ �lMk+3,l−1, �6�

where Mk,l with negative indices are assumed to vanish. We
note that only terms with the same parity of k+ l are coupled.

Since we are interested in M2,0= �u2�, we study only the case
when this parity is even: namely, k+ l=2n with n=1,2 , . . ..
The sum of the indices of the moments is 2n, except the last
term �lMk+3,l−1, where the sum is 2�n+1�. This leads to the
infinite system of linear equations that can be written in the
form

Ṁ = WM , �7�

where the column vector is M
= �M2,0 ,M1,1 ,M0,2 ,M4,0 ,M3,1 , . . . � and W is the correspond-
ing matrix. The matrix elements Wk,l are determined by Eq.
�6�. The solutions of the system of linear equations �7� are
linear combinations of the eigenfunctions at time 
:

M��
� = exp��
�U�, �8�

where U�=M��t=0� is the eigenvector of W corresponding
to the eigenvalue � found from the equation

WUm = �mUm, Um � U�m
. �9�

The infinite matrix W consists of two parts. The first one is
independent of � and consists of independent diagonal
blocks An of size �2n+1�� �2n+1�. The second one consists
of the �-dependent terms which couple the nth and �n
+1�th blocks and are located above the �n+1�th block and to
the right of the nth block. Consequently, the �-dependent
terms do not affect the characteristic polynomial, as can be
shown by elementary operations on determinants. Therefore,
the characteristic polynomial of W reduces to a product of
the block determinants �20�

	
n=1

�

det�An − �In� = 0, �10�

where In is an �2n+1�� �2n+1� unit matrix. The diagonal
block An of the infinite matrix W defined in Eq. �7�, which
couples the moments of order 2n with one another, is a band-
diagonal square matrix of size 2n+1. The explicit form of
this matrix is given by

An =

0 2n 0

− � 0 2n − 1 0

2D − 2� 0 2n − 2 0

0 6D − 3� 0 2n − 3 0

. . . .

. . . .

. . . .

0 �2n − 2��2n − 1�D − �2n − 1�� 0 1

0 �2n − 1�2nD − 2n� 0

� . �11�
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Let us denote by �max�n� the maximal eigenvalue of this
matrix. The vector of the moments in this block is Mn
= �M2n,0 ,M2n−1,1 , . . . ,M2n−l,l , . . . ,M0,2n�. In Appendix A it is
proven that for �=0 the maximal Lyapunov exponent
�max�n� behaves for large n as

�max�n� �
3

4
D1/3�2n�4/3. �12�

Then it is argued and verified numerically that also for other
values ��0 it behaves in this way.

III. ASYMPTOTIC GROWTH OF THE MOMENTS

A. Eigenvalue problem for the moments

Taking into account Eqs. �8� and �9�, we present the so-
lution of Eq. �7� as an expansion

M�
� = 

m

Cm�
�Um = 

m

e�m
cmUm, �13�

where cm�Cm�
=0�. Due to the block structure, the eigen-
vectors are characterized by two indices m= �n ,k�, where n
indicates the number of blocks, while k=1,2 , . . . ,2n+1
counts elements inside each block. Therefore, the eigenstates
Um�Un,k are found from the following algorithm. For the
block n=1 there are three eigenvalues �1,k with correspond-

ing eigenvectors Ū1,k determined by the first block A1. There-

fore, U1,k= �Ū1,k ,O�, where O is an infinite zero vector. For
the second block n=2 there are five eigenvalues �2,k with

corresponding eigenvectors U2,k= �R1,k , Ū2,k ,O�, where R1,k

is a 3D vector, while Ū2,k is a 5D vector, and k=1,2 , . . . ,5.

Here �2,k and Ū2,k are determined from the second diagonal
block matrix A2, while R1,k is determined by A1 and by the
corresponding �-dependent off diagonal block. Continuing
this procedure, we obtain 2n+1 eigenvectors for �n,k in the
form

Un,k = �Rn−1,k,Ūn,k,O� , �14�

where Rn−1,k is a �n2−1�-dimensional vector determined by
n−1 diagonal and off-diagonal blocks of the truncated ma-
trix W.

Summation over m in Eq. �13� is broken into the sum over
the block numbers n� �1,�� and the sum over indexing in-
side each block l� �0,2n�. Thus, Eq. �13� reads

M�
� = 

n=1

�



l=0

2n

cn,le
�n,l
Un,l. �15�

The vector M consists of the block vectors Mn :M
= �M1 ,M2 , . . . ,Mn , . . . �, where Mn is a vector of 2n+1 ele-
ments defined in Eq. �5� and corresponds to the moments of
the order of 2n. Therefore, the initial vector at 
=0 is

�M1,M2, . . . ,Mn, . . . � = 

n�



l�

cn�,l�Un�,l�. �16�

Assume that at the initial point 
=0 the wave function and
its derivative are small, of the order of 
 in units of ��� /��.

Then, at that point the moments scale as Mn�
2n with 

arbitrary small. As follows from Eq. �16�, one finds
cn,lUn,l� c̄n
2n+o�
2n� with bounded c̄n for any n, as demon-
strated in Appendix B. In the linear case ��=0� the growth
rate of each moment of the order of 2n corresponding to the
nth block is determined by the eigenvalue with the largest
real part, and we denote it by �max�n��max�Re �n,l�, where
the maximum is over the 2n+1 eigenvalues corresponding to
the nth block, indicated by l. As shown in Appendix A, the
asymptotic behavior of the generalized Lyapunov exponent
�max�n� when n→� is given by �max�n��An4/3, where
A= 3

424/3D1/3 is a constant �see Eq. �12��. The leading con-
tribution to the growth of Mn�
� in the nonlinear case
���0� is determined by the sum

M̃n�
� = 

m�n

c̄m
2meAm4/3
, �17�

as is clear from Eqs. �13�–�16�.

B. Resummation

This series in Eq. �16� has a vanishing radius of conver-
gence and probably has to be interpreted as an asymptotic

series. It can be used to study the behavior of M̃n�
� after
being resummed. Such a resummation is done with the help
of the identity

exp�K2� =
1

��
�

−�

+�

du exp�− u2 + 2Ku� , �18�

known as the Hubbard-Stratonovich transformation. We can
rewrite the above series as follows:

M̃n�
� = 

m�n

c̄m
2m exp�Am4/3
�

=
1

��
�

−�

+�

du exp�− u2���2u�A
� , �19�

where the function � is given by

��y� = 

m�n

c̄m
2m exp�m2/3y� . �20�

If the coefficients c̄m do not grow too fast �which we shall
assume hereafter�, the function ��y� is well defined at least
for small values of y. Note that for the resummation of Eq.
�19� it was not crucial that the power of m is 4 /3. Such a
resummation can be performed for any power �̄�2 replac-
ing 4 /3.

A more explicit resummation procedure for the right-hand
side �rhs� of Eq. �17� can be developed with the help of
fractional derivatives. First, let us expand the exponential
function

exp�A
m4/3� = 

k=0

� �A
m4/3�k

k!
. �21�

Then, writing 
2m=em ln 
2
�e�m, we obtain
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M̃n�
� = 

k=0

� �A
�k

k! 

m�n

c̄mm4k/3e�m. �22�

We now introduce the Weyl fractional derivative of order q
of a function f�z� by the Weyl integral �see, e.g., �32��:

dqf�z�
dzq �

1

��− q��−�

z f�y�dy

�z − y�1+q , �23�

where for q�0 the integral should be properly regularized
�32,33� and ��−q� is the gamma function. For f�y�=e�� it
takes the form

dqe��

d�q = �qe��. �24�

Substitution of Eq. �24� into Eq. �22� with �=m yields

M̃n�
� = 

k=0

� �A
�k

k!

d4k/3

d�4k/3 

m�n

c̄m
2m. �25�

If c̄m are bounded, as shown in Appendix B, by some C̄n, the

sum in Eq. �25� is bounded by
C̄ne2n

1−
2 ; hence, M̃n is the frac-
tional derivative of some well-defined function presented in
Eq. �23� with its regularization.

Therefore, Eqs. �25� and �19� describe the long-time as-
ymptotics of the moments. Therefore, Eq. �17� is an
asymptotic expansion and is a good approximation as long as
we sum decreasing terms. The condition is �for bounded c̄m�


2m exp�Am4/3
� � 
2�m+1� exp�A�m + 1�4/3
� . �26�

For large m this inequality is ln 1

 �

2
3A
m1/3 with m�n.

Consequently, for time of the order


 � 
0
�n� �

3

2

ln�1/
�
An1/3 , �27�

the nth moment will be dominated by the leading terms and
will grow as in the linear case ��=0�.

C. Growth of the second moments

The second moments are of particular interest for the
present work. Their growth for a time that is shorter than 
0

�1�

of Eq. �27� is dominated by the leading term: namely, M̃2
= c̄2
2e�max�1�
. Consequently, for 
�
0

�1�,

�u2� = M2,0 = c̄2
2e�max�1�
. �28�

This result was verified numerically. Using the analogy be-
tween the stationary Schrödinger equation �1� and the
Fokker-Planck equation �4� we identify the generalized
Lyapunov exponent �max�1� with the growth rate �2� as

2� = �max�1� = lim
x→�

lim

→0

ln��2�x�/
2�
x

� 0. �29�

For 
�
0
�1�, nonlinear saturation effects become relevant and

the full nonlinear theory should be used.

IV. SUMMARY

In this work the asymptotic behavior of the generalized
Lyapunov exponents of the linear Fokker-Planck equation
�3� with �=0 was found analytically and is given by Eq.
�12�. The resulting expression for the moments �17� is diver-
gent, but it can be resummed in the form �19� or �25�. There-
fore, for short time 
�
0

�n�, the first term in Eq. �17� provides
a good approximation of the moments. In particular, for the
second moment this result enabled us to identify the gener-
alized Lyapunov exponent of the linear system with the
asymptotic growth rate for the nonlinear one: namely,

2� = �max�1� . �30�

According to the implementation of the method in the man-
ner of Borland, as outlined in �20�, this is the decay rate of
the stationary states of the random nonlinear equation �1�,
showing that it is independent of the nonlinearity �. The
analysis of the present paper defines the asymptotic region
where the wave function is small, a region from where Eq.
�30� is found.
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APPENDIX A: ASYMPTOTIC BEHAVIOR OF THE
GENERALIZED LYAPUNOV EXPONENTS

In this appendix, �max�n�, the maximal eigenvalue of the
matrix �11� will be evaluated. Following �28� we call this
quantity a generalized Lyapunov exponent. By elementary
dimensional analysis �28�, one finds that the following scal-
ing is suggestive:

�max�n� = D1/3Ln� �

D2/3� . �A1�

In the long-time limit the moments of order 2n grow as
e�max�n�t. In �28�, Zillmer and Pikovsky studied �max�n� for
different values of n: they give exact expressions for n=2 for
n→0 �which corresponds to the usual Lyapunov exponent�
and consider limiting cases for large values of the dimen-
sionless parameter � /D2/3. They also study numerically the
behavior of �max�n� as n→�, keeping the dimensionless pa-
rameter fixed. They found numerically the scaling law

�max�n� � n� with � � 1.4. �A2�

The fact that the scaling exponent � is different from 2 im-
plies deviations from Gaussian behavior and breakdown of
monoscaling; the consequences of this breakdown of single
parameter scaling for conductance distribution were studied
by Schomerus and Titov �29�. We also remark that related
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studies were also carried out in the context of the harmonic
oscillator with random frequency �30,31�.

In this appendix, we study analytically the behavior of the
generalized Lyapunov exponents in the limit n→�. For the
special case of �=0, we prove the following asymptotic for-
mula:

�max�n� �
3

4
D1/3�2n�4/3. �A3�

We shall then argue that this behavior remains valid for any
finite value of �.

We now outline the proof of the scaling equation �A3� for
�=0 by studying the large-n behavior of the coefficients of
the characteristic polynomial P�X� of the matrix An. Recall-
ing that if �n,1 , . . . ,�n,2n+1 are the eigenvalues of An we have

P�X� = 	
i=1

2n+1

�X − �n,i� = X2n+1 − � 

i=1

2n+1

�n,i�X2n

+ �

i�j

�n,i�n,j�X2n−1 + ¯ + 	
i=1

2n+1

�n,i. �A4�

We also have ��n�=maxl�Re�n,l�. The coefficients of the
characteristic polynomial P�X� are symmetric functions of
the eigenvalues �n,i. Thanks to the Newton formulas, all
these coefficients can be written as linear combinations of
traces of powers of An. Hence, we have

P�X� = X2n+1 − Tr�An�X2n +
1

2
��Tr�An��2 − Tr�An

2��X2n−1

+ ¯ . �A5�

In principle, we can obtain the eigenvalues from the traces of
the 2n+1 powers of An. In practice, since we are interested
only in the asymptotic behavior of �max�n�, it will be com-
puted from the traces of high powers. From Eq. �11� we
observe that Tr�An�=0. In the case �=0, we also have
Tr�An

2�=0. More generally, for �=0, we can show that
Tr�An

k��0 only when k is a multiple of 3. Indeed, writing

An = d + g , �A6�

with

d =

0 2n 0

0 0 2n − 1

. . �

0 1

0
� ,

g = D

0

0 0

2 0 0

6 0 0

12 0 0

� � �

2n�2n − 1� 0 0

� , �A7�

we obtain

�d + g�k = 

k1+k2=k

Wk1,k2
, �A8�

where Wk1,k2
is a product of k factors with k1 factors equal to

d and k2 factors equal to g, with k1+k2=k �there are 2k such
terms because the matrices d and g do not commute�. We
remark that d is an upper-diagonal band matrix and its non-
vanishing terms are all on the band located at level +1 above
the diagonal. Similarly g is a lower-triangular band matrix
and its nonvanishing terms are all on the band located 2
levels below the diagonal. Therefore a product of k1 matrices
d and k2 matrices g will have a nonzero diagonal term only if
k1=2k2—i.e., if k=3k2; hence, k is a multiple of 3. For ex-
ample, we have

Tr�An
3� = Tr�ddg + dgd + gdd�

= 3Tr�d2g�

= 3D 

l=1

2n−1

l�l + 1��2n − l + 1��2n − l�

� 3D�2n�5�
0

1

x2�1 − x�2dx

= D
16n5

5
. �A9�

More generally, the terms that contribute to Tr�An
3k� are ob-

tained by taking the product of 2k factors d and k factors g
written in all possible orders �there are �3k�!

�2k�!k! such terms�:

Tr�An
3k� = 
 Tr�W2k,k� = d2kgk + �permuted terms� .

�A10�

In particular, we have

Tr�d2kgk� = Dk

l

l�l + 1��l + 2� . . �l + 2k − 1�

��2n − l + 1��2n − l� ¯ �2n − l − 2k + 2�

� Dk�2n�4k+1�
0

1

x2k�1 − x�2kdx

= Dk�2n�4k+1 �2k�!�2k�!
�4k + 1�!

. �A11�

The trace of any term W2k,k is given by the same expression
at leading order: indeed, the elements of the matrix dg are of
order n3, whereas those of the commutator �d ,g� are of order
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n2. The reason is that both dg and gd are triangular with all
nonvanishing matrix elements one level below the diagonal
of the form �dg�l,l−1 and �gd�l,l−1. In the center of the matrix,
l�n, a generic term is of the order of n3+O�n2�. Therefore
both dg and gd are dominated by n3, while �d ,g�, given by
the difference of two such terms, is dominated by the O�n2�
corrections. We know that any W2k,k differs from d2kgk

by a finite number of commutators. Therefore, Tr�W2k,k�
=Tr�d2kgk�+ �subleading terms�. We thus have

Tr�An
3k� �

Dk�2n�4k+1

�4k + 1�
�3k�!�2k�!

�4k�!k!
. �A12�

Rewriting this trace in terms of the eigenvalues of the matrix
An, we obtain



i=1

2n+1

�n,i
3k �

Dk�2n�4k+1

�4k + 1�
�3k�!�2k�!

�4k�!k!
. �A13�

Besides, from Eq. �A12�, we deduce that

�Tr�An
3��k

Tr�An
3k�

� nk−1. �A14�

This equation shows that the trace is not dominated by the
largest eigenvalue alone: otherwise, this “participation” ratio
would be of order 1. Rather, a finite fraction � of the eigen-
values has a scaling behavior similar to that of �max�n� and
we can write Tr�An

3k���n�max�n�3k. Thus, we deduce from
Eq. �A13� the behavior

�n�max�n�3k �
Dk�2n�4k+1

�4k + 1�
�3k�!�2k�!

�4k�!k!
. �A15�

Finally, using the Stirling formula, we obtain for large k,
assuming �n does not vary strongly with n,

�max�n� � D1/3�2n�4/3� �3k�!�2k�!
�4k�!k!

�1/3k

�
3

4
D1/3�2n�4/3.

�A16�

This ends the proof of Eq. �A3� or �12� in the case �=0. In
Table I the highest eigenvalue of the matrix An is computed
numerically for various values of 2n up to 2n=300 �for �
=0 and D=1�. The asymptotic scaling given in Eq. �A3� is
well satisfied.

When � is different from 0, we can still write An as a sum
of two matrices as in Eq. �A6�: the upper-diagonal matrix d
remains the same as in Eq. �A7�, but the lower-triangular part
g� is now given by the previous g plus a band-diagonal ma-
trix g2��� �with a band-diagonal at level −1�, which contains
terms proportional to �. However, in the large-n limit �and
keeping the value of � fixed� the matrix elements of g are
much larger than those of g2���: hence g��g up to subdomi-
nant contributions and the large-n scaling of the maximal
eigenvalue is insensitive to � at leading order; therefore, Eq.
�A3�, derived for �=0, remains true for finite values of �. In
Tables II and III we give numerical results �=1 and �=−1
�taking D=1 for both cases�. The scaling behavior, propor-
tional to �2n�4/3, is well satisfied and it seems also that the
prefactor 3 /4 remains correct.

TABLE I. Behavior of the dominant eigenvalue in the case
�=0, D=1.

2n �max�n�
3D�2n�4/3

4�max�n�

10 15 1.077

40 101 1.015

80 257 1.006

100 347 1.003

120 443 1.0021

140 544 1.0022

160 650 1.0018

180 761 1.0016

200 876 1.0013

300 1504.7 1.0010

TABLE II. Behavior of the dominant eigenvalue in the case
�=1, D=1.

2n �max�n�
3D�2n�4/3

4�max�n�

10 13.2 1.223

40 95.9 1.072

80 248 1.043

100 336 1.035

120 431 1.031

140 530 1.028

160 635 1.026

180 745 1.023

TABLE III. Behavior of the dominant eigenvalue in the case
�=−1, D=1.

2n �max�n�
3D�2n�4/3

4�max�n�

10 18 0.900

40 107.5 0.952

80 267 0.968

100 358 0.972

120 455 0.975

140 557.5 0.977

160 666 0.980

180 777 0.981
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APPENDIX B: BOUNDNESS OF THE c̄n

Let us assume an expansion �of the initial moments �16��

Mn.l = 

m=0

�

bn,l
�n+m�
2�n+m� �B1�

for the lth moment of order n as defined after the matrix �11�.
The b’s are bound �by construction�. Let us expand the cn,l of
Eq. �16� in powers of 
 as

cn,l = 

m�

c̄n,l
�m��
2m�. �B2�

Since only even moments are considered, the powers of 
 are
even. Now we write Eq. �16� in the form

Mn.l = 

n�,l�

cn�,l�Un�,l�
�n,l� , �B3�

where we equate the components of the vectors. Now we use
the property �14� of the eigenvectors Un�,l�

�n,l� —namely,
Un�,l�

�n,l� =0 for n�n�—and solve the equation order by order in

.

Take first n=1 and leading order in 
,

b1,l
�1� = 


l�

c̄1,l�
�1� U1,l�

�1,l�, l = 0,1,2. �B4�

These are three linear equations for the c̄1,l�, since the eigen-
vectors U1,l�

�1,l� are given.
Next take n=2,

b1,l
�2� = 


l�=0

2

c̄1,l�
�2� U1,l�

�1,l� + 

l�=0

4

c̄2,l�
�2� U2,l�

�1,l�, �B5�

b2,l
�2� = 


l�=0

2

c̄1,l�
�2� U1,l�

�2,l� + 

l�=0

4

c̄2,l�
�2� U2,l�

�2,l�. �B6�

These are eight equations for the c̄2,l�
�2� , c̄1,l�

�2� .
This process can be continued to any order in 
. The

independence of the eigenvectors implies that finite solutions
for the c̄n,l

�m�� can be obtained by Kramer’s rule. Note that
bn,l

�m��=0 for n�m�; therefore, also c̄n,l
�m��=0 for n�m�. There-

fore,

cn,l � c̄n
2n �B7�

for small 
.
This shows that the c̄n are bounded for any finite n, but it

does not imply the existence of a uniform bound for all n and
m.
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